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Abstract

The hardware implementation of signal microprocessors based on superconducting technologies seems relevant for a number of
niche tasks where performance and energy efficiency are critically important. In this paper, we consider the basic elements for
superconducting neural networks on radial basis functions. We examine the static and dynamic activation functions of the proposed
neuron. Special attention is paid to tuning the activation functions to a Gaussian form with relatively large amplitude. For the prac-
tical implementation of the required tunability, we proposed and investigated heterostructures designed for the implementation of

adjustable inductors that consist of superconducting, ferromagnetic, and normal layers.

Introduction
For modern telecommunications, probabilistic identification of  stochastic processes [1-4], as a popular machine learning
various sources in a broadband group signal is extremely impor- method for spatial interpolation of non-stationary and non-

tant. Also, probabilistic analysis is used in the consideration of ~ Gaussian data [5], as a central part of a compensation block to
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enhance the tracking performance in control systems for a class
of nonlinear and non-Gaussian stochastic dynamic processes

[6].

An important example for this work is the cognitive radio,
which is able to receive information about the features of the
“radio environment” and adjust its operating parameters based
on this data [7-13]. Similar problems arise nowadays when
reading data in superconducting noisy intermediate-scale quan-
tum (NISQ) computers [14-17]. Here again, we need real-time
identification and classification of varying signals from multiple
sources (qubits) in a narrow frequency range. When working
with large data, it is necessary to create specialized neural
networks at the hardware level to effectively solve such prob-

lems.

Josephson digital circuits and analog receivers have been used
for a long time to create software-defined radio-systems [18-25]
as well as read-out circuits for quantum computing [26-33].
They realize a unique combination of a wide dynamic range and
high sensitivity when receiving signals, with high performance
and energy efficiency at the stage of the processing. It seems
reasonable to implement additional processing of incoming data
inside the cryosystem using the capabilities of neural network
computing [34-43]. The creation of an extremely low-dissi-
pating element base for such systems is a very actual scientific
and technical task, which requires theoretical and experimental
studies of the features of macroscopic quantum interference in
the complex Josephson circuits.

The direct use of the previously proposed superconducting adia-
batic neural network (ANN) based on the perceptron [44-48] for
probabilistic identification is not possible. In particular, during
the formation of the output signal in the ANN, the so-called
global approximation of the input signal is implemented
[11,12], in which almost all neurons are included in signal pro-
cessing. In addition, the perceptron is a fully connected
network, which means an abundance of synaptic connections
between neurons. These circumstances suppose a highly
resource-intensive learning of the network for signal analysis.
There is an alternative approach with a representation of the
input set of data into the set of output values by using only one
hidden layer of neurons. Each of these neurons is responsible
for its own area of the parameter space of incoming data. This is
the probabilistic or Bayesian approach, where radial basis func-
tions (for example, Gaussian-like functions) are used as neuron

activation functions.

The most common networks operating on this principle are
radial basis function networks (RBFNs) (also known as

Bayesian networks). When using such a network, objects are
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classified on the basis of assessments of their proximity to
neighboring samples. For each sample, a decision can be made
based on the selection of the most likely class from those to
which the sample could belong. Such a solution requires an esti-
mate of the probability density function for each class. This
score is obtained by consideration of training data. The formal
rule is that the class with the tightest distribution in the scope of
the unknown instance will take precedence over other classes.
The traditional approach for estimating the probability density
for each class is to assume that the density has some definite
form. The normal distribution is the most preferred since it
allows one to estimate such parameters of the model as the
mean and standard deviation analytically. The superconducting
implementation of the key elements of the discussed neural

networks is the focus of this work.

Results and Discussion
Model of tunable Gauss-neuron: numerical
simulations

A common architecture of the considered RBFNs [49] is
presented in Figure la. These networks have only one hidden
layer of neurons on which components of the input vector x are
fed. Every neuron of the hidden layer calculates the values of
the 1D function /(x).

(=)’

h (X)=exp
k( ) 20]2{

> (1)

where x;, is the k-th reference point and oy, is the scattering pa-

rameter for the one-dimensional function 7 (X).

In this paper, we propose a modified tunable neuron circuit [44]
for RBFNs (see Figure 1b), with a Gaussian-like activation
function. It consists of two identical Josephson junctions JJ; and
JJ, in the shoulders with input inductances, L, and output induc-
tance L. It is also used to set an additional bias magnetic flux,
®y,. Flux biasing is used to provide a suitable transfer function
for asynchronous circulation of currents in the connected
circuits. In the following, we will call such a cell a “Gauss-
neuron” or a “G-cell/neuron”.

Hereinafter, we use normalized values for typical parameters of
the circuit. All fluxes (input ®;, and output @, and bias Oy)
are normalized to the flux quantum ®g; currents are normalized
to the critical current of the Josephson junctions /¢; induc-
tances are normalized to the characteristic inductance 2rLIc/®y,
times are normalised to the characteristic time t¢c = ®y/(2nV )

(Vc is the characteristic voltage of a Josephson junction).
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Figure 1: (a) Schematic illustration of a RBF network. (b) Schematic representation of a Gauss-neuron ensuring a Gauss-like transfer function.

Equations of motion were obtained in terms of half-sum and
half-difference of Josephson phases ¢, ¢ (0 = (¢ + ¢2)/2 and
P = (@ — ¢2)/2), a detailed derivation of the equations is given

in the Appendix section:

6=—2_———sin0Ocosy,
[+21 5, v @
" :_M—Sin\ycose. 3)

The output magnetic flux obeys the following equation:

2

out
=_Zout_.(g_g,).
Qo = 7 (6-9p) )

Figure 2a,b shows the families of transfer functions of a Gauss-
neuron at different bias fluxes. They are compared with the
radial basis function taken in the form g(x) = exp(—xz/(202))
(dashed line). All transfer functions were normalized to their
maximum value, since at the first stage we were interested in
the shape of the curve itself. It can be seen that the shape of the
response meets the requirements; in addition, it can be adjusted
using a bias magnetic flux @p. An important feature of the
system is that it also allows for non-volatile tuning with
memory using tunable inductances / and /[, see Figure 2c—e.
Estimations for different values of @, show that the best match
(with Gauss-like radial basis function) can be achieved with
¢p = 0.05m and inductance values of / = 0.1 and /oy = 0.1. Also
the investigation of the full width at half maximum (FWHM)
and of the amplitude of the transfer functions of the Gauss-
neuron was carried out for different values of ¢y, (Figure 2¢,d)

and inductance / (Figure 2e). It can be seen that an increase in
the value of the inductance / decreases the FWHM of the
transfer function and increases its amplitude. The bias flux is a
convenient adjustment of the transfer function of the tunable
Gauss-neuron; the bias flux should vary in the [0...0.5]7 range
to save the proper form of the transfer function. The mean of
the transfer function can be controlled by an additional constant
component in the input flux. By selecting the parameters of a
configurable G-neuron, we can make the effective field period
for the activation function (resulting from the ®(-periodicity of
all flux dependencies for the interferometer-based structures)
large enough for practical use in real neural networks
(Figure 2e).

We calculated the standard deviation (SD) of the transfer func-
tion from the Gaussian-like function g(x) with fixed amplitude.
The obtained results are presented in the {/, [oy¢} plane. This vi-
sualization allows one to find the most proper operating param-
eters for the considered element. The magnitude of the ampli-
tude of the transfer function is also presented (Figure 3a,b). The
optimal values of inductance corresponding to the minimum
of SD lies in the hollow of the surface, see Figure 3b. The
minimum SD value is reached at [ = 0.1, /oy = 0.1. The
position of the hollow in Figure 3b could be expressed as
(loupsp = 0.8 = 0.55())sp. At the same time, for relatively small
@®p, the transfer function amplitude increases with increase of
the output and shoulder inductances, [y, and /. Thus, the choice
between the proximity of the transfer function to a Gaussian-
like form and the maximization of the response amplitude is de-
termined by the specifics of the network when solving a specif-
ic problem. Once again, we emphasize that variations in the pa-
rameters of the circuit within a fairly wide range allow one to
change the amplitude and width of the activation function,

while maintaining its Gaussian-like shape.
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Figure 2: Transfer functions (normalized) and their main characteristics for the Gauss-neuron. (a, b) Families of the normalised transfer functions
depending on the magnitude of the bias flux @y, for various pairs of inductances / and Ioyt: (@) / = 0.1, Iyt = 0.1; (b) / = 0.9, /oyt = 0.1. (c) Dependencies
of FWHM and amplitude on the bias flux ¢y, of transfer functions for / = 0.1, 0.5, and 0.9 with /o, = 0.1. (d) Dependencies of FWHM and amplitude on

the inductance / for transfer functions of the Gauss-neuron at /oy = 0.1 and @y, = 0.05m.
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Figure 3: (a) Amplitude of the transfer function and (b) its standard deviation from the Gaussian-like function depending on the inductances / and /oyt

of the G-cell. The bias flux is equal to 0.05m.
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The dynamic transfer functions (i.e., the dependencies of the
output current on the time-varying input flux) were also calcu-
lated, see Figure 4a. The input magnetic signal is a smoothed
trapezoidal function of time with a rise/fall time fgf, see the
inset in Figure 4b. It can be seen that the dynamic activation
function of the required type without hysteresis can be obtained
with adiabatic operation of the cell (frg up to 8000¢c, where #¢
is the characteristic time for the Josephson junction). The dissi-
pation during the operation of the Gauss-neuron remains small,
which justifies classifying the proposed cell as adiabatic
(Figure 4b).

Realization of tunability: adjustable kinetic
inductance

For neural networks based on the considered G-neurons,
tunable elements with linear current-to-flux transformation
(linear inductors) and memory properties are extremely impor-
tant [50,51]. Tunability of the inductance / in Figure 1b allows
for an in situ switching between operating modes directly on the

chip.

In thin layers of superconductors used to create parts of a
neuron, the kinetic inductance is relatively large compared to
the geometric one [52]. This is important for us since one can
change the kinetic inductance relatively simply by controlling
the concentration of superconducting charge carriers (Cooper
pairs or superconducting correlations). This approach is the
basis of the concept of our tunable in situ Gauss-neuron. A sim-
ilar idea is used in kinetic inductance devices, which are based
on thin superconducting strips [53,54]. They are commonly
used for the design of photon detectors and parametric ampli-

fiers. But these devices use nonlinear properties of thin super-
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conducting films at large values of carrying currents compa-
rable to the critical current. However, for our purposes, linear
inductors are required. So we consider only the case of a small
current in comparison with the depairing current of the super-
conductor.

In this paper, we propose a tunable kinetic inductance with inte-
grated spin-valve structure [46]. A superconducting spin valve
is a device that can control the propagation of the supercon-
ducting charge carriers, induced from the superconducting layer
via the proximity effect. The typical spin valve [55-57] is a
hybrid structure containing at least a pair of ferromagnetic (FM)
layers with different coercive forces. Variations in the relative
orientation of their magnetizations change the spatial distribu-
tion of the superconducting order parameter. In the case of
parallel magnetization of the FM layers the Cooper pairs are
effectively depairing inside them (closed spin valve). For the
antiparallel orientation, the effective exchange energy of the
magnetic layers is averaged and suppression of the supercon-
ducting order parameter is weaker (open spin valve), providing
a propagation of Cooper pairs to the outlying layers of the
hybrid structure. The switching between the open and closed
states of the valve leads to a noticeable change in the spatial dis-
tribution of Cooper pairs. The implementation of a thin super-
conducting spacer (s) between the FM layers supports the
superconducting order parameter and increases the efficiency of
the spin valve effect [58]. Here, we propose a development of
this approach, allowing one to significantly increase the effec-

tive variations in the kinetic inductance.

We study proximity effect and electronic transport in the multi-
layer hybrid structures in the frame of Usadel equations [59]:

0.07 100
8000,
(@) 6l (b)

§ 0.05 10
5 o0af
= 1L
5_ 0.03
=
© oot o1l

0.01

Input flux, ¢,, Rise/Fall time, 55
0.00 : : : 0.01 b ' -
0.00 1.57 3.14 4.71 6.28 10 100 1000 10000

Figure 4: (a) Dynamic transfer function of a Gauss-neuron for a trapezoidal external signal for different values of the rise/fall times of the signal tgg
and (b) energy dissipation, normalised to the characteristic energy Eq = ®g/c/2m, as function of the rise/fall time of the input signal for different bias
fluxes: @p = {0.01, 0.05, 0.1}r1. The insert demonstrates the form of temporal dynamic for input flux and dissipation. If the critical current for Josephson

junctions /¢ is equal to 100 pA and ¢, = 0.05m than Egjs ~ 0.01 aJ for trF =

6 ns (corresponds to approx. 1700tc).
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Gd—f—F L -8F =-GA, Gg + FyFly =1, (5)
dx dx

mkpTce?

T X A
Aln— + ks T ——F |=0, (6)
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with Kupriyanov—Lukichev boundary conditions [60],

dF  F dG, G,
S W B Y R O 7
YBﬁl[dX G, dx] r 1G1 @)

at the S/FM interfaces. Here G and F are normal and anom-
alous Green's functions, A is a pair potential (superconducting
order parameter), w = mkgT (2n + 1), where n is a natural num-
ber, T is the temperature, kg is Boltzmann’s constant,
®= o+ iH, where H is the exchange energy (H = 0in S and N
layers). The indexes “1” and “r” denote the materials at, respec-
tively, the left and right side of an interface, £ is the coherence
length, p is the resistivity of the material (in the following, € and
p will also will be mentioned with indexes that denote the layer
of these parameters), T is the critical temperature of the super-
conductor, and yg = (RgA)/(pi&)) is the interface parameter,
where RgA is the resistance per square of the interface

The calculated distribution of the anomalous Green function, F,
permits one to estimate the ability to influence the propagation
of the superconducting correlations (screening properties) for

(@)
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the hybrid structure. The spatial distribution of the screening
length A(x) directly depends on the proximization of the super-
conducting order parameter in the system [61,62]:

A(x) 2 =22 % Z‘;)Re(F(x)z); a2 = 2tokelc ;:;TC . (8)
®>!

where pg is the resistivity of the superconducting material, ) is
the vacuum permeability and 7 is Planck’s constant. For
instance, for a homogeneous niobium film, the estimate for the
constant Aq is around 100 nm, while experimentally measured
values of the screening length A at 7 = 4.2 K are around 150 nm.
The expression for the kinetic inductance of the structure is
directly correlated with screening length [52,63],

d -1
1 =B D] ]| ©
0

where X is the length of the strip, W is the width, and d is the
thickness of the multilayer. In our calculations, we assume that
the currents in the system are weak, and the structure thickness
is much smaller than the screening length.

We propose a hybrid structure (see Figure 5) consisting of three
parts, namely a pairing source, a spin valve, and a current-
carrying layer of normal metal with low-resistivity. The general
principle of operation is the following: The pairing source
generates Cooper pairs and the spin valve controls their propa-
gation to the layer von low inductance. If the valve is open

\\4
AX
Current-carrying dy
layer d,
dFMZ
Spin-valve d,
Closed Open
dFMl
: (0 Pairing Source
S Aj S

(b) X

Figure 5: Sketch of the tunable kinetic inductance based on multilayer structure in the (a) closed and (b) open states. Blue solid arrows reveal magne-
tization orientation of FM¢ and FM;, layers, and dashed yellow arrows demonstrate direction and localization of the supercurrent /g.
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(Figure 5b), the normal metal is repleted with Cooper pairs, and
the biggest part of the supercurrent /g is flowing along the struc-
ture through the metallic layer (N) with relatively low induc-
tance. In the case of the closed valve (Figure 5a), pairs are
locked up in the source layer, and the supercurrent /g is limited
to this highly inductive part of the structure. The redistribution
of the current flowing along the multilayer is associated with a

change of the total kinetic inductance.

For a quantitative model, we choose the following components
of the structure: The pairing source is a superconductor layer
slightly thicker than the critical value at which the pair poten-
tial appears. During calculations we suppose its thickness

dg = 3&g.

The spin valve can be implemented as a multilayer structure
FM—s—-FM,—s-FM |—s—FM, with several ferromagnetic layers
FM; and FM, of different thicknesses dgmyp 2 (dpm1 = 0.158,
denvp = 0.1E, exchange energy H = 100 kgT¢ in calculations,
separated by thin spacers of a superconductor or normal metal
(N) (dg = 0.5 for example).

The control of the spin valve is operated by turning the FM
layers into states with parallel (P) and antiparallel (AP) mutual
orientations of their magnetizations. This process can be real-
ized by application of the finite external magnetic field or by
injection of the spin current due to the spin torque effect [56].
For the proposed design of the Gauss-neuron, it is suitable to
change magnetizations in the tunable inductance [ with the
control currents in the input circuits, see Figure 1b. Earlier we
experimentally demonstrated [58] that for such a control it is
sufficient to create a magnetic field strength of the order of

30 Oe. Note that after the control current is turned off, the valve

S FM, FM, FM, FM, N
(a) 07 F=AP--ceo____ lx -S s
P -
0.6 |, ~
53
%
0.5 —.5
k3]
04
4=
w2
03 rg
Q
&
0.2 O
0.1F
0.0
0
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remains in the open/closed state, since the direction of magneti-

zations in the FM layers is preserved.

The current-carrying layer is a thin strip of normal metal with
thickness dy = 2€ and small resistivity py < ps, which ensures
its lower kinetic inductance relative to the rest of the structure.
This leads to a flow of the current mostly through this layer in

the case of the open valve.

Figure 6a shows the spatial distributions of the pairing ampli-
tude F(x) in the cross section of this structure for parallel (blue
solid line) and antiparallel (red dashed line) orientations of the
magnetization of the FM; and FM, layers. The pairing ampli-
tude F significantly drops in the spin valve region for both
cases. However, the residual level of proximization (value of F)
in the N layer is five times larger for the AP orientation than for
the P orientation.

To enhance the effect, we propose to add an additional super-
conductor layer s; (Figure 6b). In the case of the closed valve,
the s; layer is in the normal state, and the superconducting
correlations in the N layer are negligible. If the valve is open,
the s; layer goes into a superconducting state with an increase
of the pairing amplitude F in the N layer up to two times (see
Figure 6a).

Figure 7 demonstrates the dependence of the kinetic inductance
of the structure shown in Figure 6b versus as a function of the
thickness of the intermediate s or n layers. At large thicknesses
of the intermediate layers, the valve loses efficiency. In the case
of normal spacers, the transition occurs to a completely normal
state, where the kinetic inductance of the entire structure coin-

cides with the kinetic inductance of the source layer S. With a

(b) 0.7 F--AP
P
0.6 ~
£
05| &
.2
k31
04} <
2
7]
03F g
[}
e
02FO
0.1
x/&
0.0 u .
0 2 4 6 8

Figure 6: Spatial distribution of the pair amplitude F in the hybrid structures (a) S—-FM{—s—FMy—s—FM;—-s—FMx>—N without additional s layer and
(b) S-FM{—s—FMx—s—FM;—s—FMx>—s1—N with an additional superconducting layer for parallel (blue solid line) and antiparallel (red dashed line) mutual

orientations of magnetization between FMy and FMy layers.
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large thickness of superconducting spacers s, the valve system
also loses efficiency, transferring the entire structure to a com-
pletely superconducting state. However, at thicknesses of the
order of (0.5...1)&, the maximum spin-valve effect appears, and
the total kinetic inductance of the structure changes several
times during switching between states with parallel and antipar-
allel magnetization orientations.

4 . S-FM -n-FMyn-FM-n-FM,-S,N_

0.8 -~

0.4 F |85

02}

0.0

Figure 7: Kinetic inductance of the hybrid structures
S—FM{—s—FMo—s—FM—s—FMo—s—N and
S—FM{—n—-FMz—n—-FMy—n—-FMx—s{—N for parallel (dark blue solid line
and long dashed green line) and antiparallel (red dashed line and
orange dash—dot line) mutual orientations of magnetization between
FM; and FM layers as functions of the spacer thickness.

We also made some estimates for the quantitative value of the
kinetic inductance of the structure shown in Figure 7 based on
niobium technology. The inductance of the strip with width
W =100 nm, length X = 1 um, and total thickness d = 80 nm
(this corresponds to the spacer thickness dg =5 nm) the esti-
mated kinetic inductance is about 7 pH in the closed state and
about 15 pH in the open state. For comparison, the geometric

inductance of such a strip is of the order of 1 pH.

Conclusion

We have considered a basic cell for superconducting signal
neurocomputers designed for the fast processing of a group
signal with extremely low energy dissipation. It turned out that
for this purpose it is possible to modify the previously dis-
cussed element of adiabatic superconducting neural networks.
The ability to adjust the parameters of the studied Gauss-cell
(with Gaussian-like activation function) is very important for in
situ switching between operating modes. Using microscopic
modeling, we have shown that the desired compact tunable
passive element can be implemented in the form of a control-

lable kinetic inductance. An example is a multilayer structure

Beilstein J. Nanotechnol. 2022, 13, 444—454.

consisting of a superconducting “source”, a current-carrying
layer and a spin valve with at least two magnetic layers with
different thicknesses. The proposed tunable inductance does not
require suppression of superconductivity in the source layer. In
this case, the spin-valve effect determines the efficiency of
penetration of superconducting correlations into the current-
carrying layer, which is the reason for the change in inductance.

Appendix

We present the derivation of Equation 2-Equation 4 in the
framework of the resistively shunted junction (RSJ) model. A
typical approach to obtain the equations of motion for
Josephson systems is to write the Kirchhoff and phase

constraints. From Figure 1b), it follows:

i1+i2 +i0ut ZO,
Qp +ip L+ @iy =gyt Lout + P>
P +ip L =Py = gyt *Lout + P

(10)

Let us sum up the second and third equations of the system in
Equation 10, taking into account the first equation, and dividing
the left and right sides by 2:

-
6+%-(1+2lout):(pb. an

As the current through the Josephson junction has a form
iy = @ +sin@, Equation 11 gives us the first equation of motion
(Equation 2) for the Gauss-neuron:

_ P~

=—2———sinBOcosy.
14215, v

(12)

Similar operations should be conducted for the difference be-
tween the second and third equations of the system in

Equation 10:

h=h

+
v 2

="Pin> 13)

and the second equation of motion (Equation 3) for the system

is obtained:

A4 —siny cos®. (14)

To obtain Equation 4, we have to convert Equation 11 accord-

ing to the expression i + iy = —igyt = ~(Qout/lout):

451



21

Pout = T——-(0-0p ).
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